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Summary

A high-order Collocation Penalty via Reconstruction (CPR) computational
fluid dynamics code that solves the compressible Navier-Stokes equations
was applied to the Taylor-Green vortex problem to test the accuracy and the
performance of the direct numerical simulation of three-dimensional periodic
and transitional flow. Based on analysis of the scheme’s dispersion and dissi-
pation characteristics [1, 2], it was hypothesized that the CPR scheme can be
used for Implicit Large Eddy Simulation (ILES), simulating transitional and
turbulent flow without the addition of an explicit SGS model [3]. The third-
order explicit Runge-Kutta scheme of Shu and Osher [4] is used to advance
the simulation in time.

1 Code Description

The conservation laws are discretized by the correction procedure via recon-
struction (CPR) scheme with DG correction functions. The divergence of the
inviscid fluxes are determined either through a chain rule or Lagrange poly-
nomial approach. The Roe flux is employed as the common interface flux and
the BR2 scheme for the viscous flux. As for boundary conditions, Riemann
invariants are used in the far-field, while either slip or adiabatic non-slip on
the walls. The dynamic viscosity coefficient is either held constant through-
out the computational domain or obtained from the Sutherland’s law. For
the flat plate boundary layer case, the former is employed. Steady state so-
lutions are obtained using a Newton-Krylov algorithm, which serves as the
primary solver. The sparse linear system of equations are solved using GM-
RES included in the PETSc package version 3.2-p7, while preconditioning
is provided by a block-Jacobi method. Before GMRES is employed, several
block-Jacobi iterations are often performed. The solver is parallelized using
MPI via Open MPI, version 1.4.3 where grid partitioning is achieved through
ParMETIS. An implicit-explicit (IMEX) scheme serves as a secondary solver,
where a three-stage diagonally implicit Runge-Kutta (DIRK) is used. Each
stage is split between an explicit and implicit sub-stage, where the non-stiff
regions are solved with an explicit RK, while the stiff portions are solved
through the above stated Newton approach. Post-processing is typically per-
formed with Tecplot 360 and/or Gmsh version 2.8.5.
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1.1 Computations

The Guillimin cluster of the McGill high performance computing (MHPC)
infrastructure, part of the Compute Canada HPC network, served for the
computations on the hb architecture. Machine specifications and Taubench
results are presented in Tables 1 and 2.

Machine name Specifications
MHPC-(hb) Dual Intel Westmere EP Xeon X5650

(6-core, 2.66 GHz, 12MB Cache, 95W)

Table 1: Computer specifications

Machine name Taubench CPU times
MHPC-(hb) 9.5 (s)

Table 2: Taubench results

2 Case Summary

The following flow conditions were specified such that the flow be effectively
incompressible:

Quantity Value
Reynolds number, Re 1600
Ratio of specific heats, γ 1.4
Prandtl number, Pr 0.71
Bulk viscosity, µν 0
Mach number, Re 0.1
Characteristic convective time, tc

L
V0

Final time 20tc

Residual tolerances or other convergence criteria:
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Simulation run until 20tc.

Machines used (number of cores if parallel):
384 processors using METIS [5].

3 Meshes

A regular cartesian mesh with 523 nodes (for a P4 solution) was generated
using a Matlab script.

Domain size (periodic cube):
−πL ≤ x, y, z ≤ πL;L = 1

Structured meshes with DOF/element = (P + 1)3

For P4 results presented here with 523 elements (2603 total DOF), mesh
spacing = 2π

52
.

4 Results

All results presented below compare the P4 CPR DNS results (2603 DOF)
with the reference data from from spectral DNS simulation (5123 DOF).

4.1 Errors

The L2 norms of the errors between the three measured parameters and the
reference data are given in the table below; the error plots give the errors as
a function of the non-dimensionalized time.

L2 Errors
h TauBench Total Kinetic Energy Dissipation Rate Enstrophy

3.85e-03 8.56e+07 1.46e-03 7.41e-03 7.55e+00

Table 3: L2 Errors for measured parameters
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Figure 1: Evolution of the dimensionless energy dissipation rate as a function
of the dimensionless time: results of reference data and CPR code
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Figure 2: Evolution of the enstrophy as a function of the dimensionless time:
results of reference data and CPR code
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Figure 3: Filled contours of L
V0
|ω| at x

L
= −π with contour lines from spectral

DNS simulation at t* = 8
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Figure 4: Coloured contours of L
V0
|ω| at x

L
= −π with contour lines from

spectral DNS simulation at t* = 8
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Figure 5: Evolution of the total kinetic energy as a function of the dimen-
sionless time: results of reference data and CPR code
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Figure 6: Error in the dimensionless energy dissipation rate as a function of
the dimensionless time: results of reference data and CPR code
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Figure 7: Error in the enstrophy as a function of the dimensionless time:
results of reference data and CPR code
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Figure 8: Error in the total kinetic energy as a function of the dimensionless
time: results of reference data and CPR code
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